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A B S T R A C T  

The efficient management of energy usage in intelligent buildings presents a significant obstacle 

within sustainable infrastructure, requiring inventive approaches to tackle increasing energy 

requirements and environmental issues. Although Internet of Things (IoT) strategies produce a huge 

quantity of data in these structures, it is still challenging to extract practical insights for effective 

energy management. This study utilizes machine learning approaches, namely Long Short-Term 

Memory to Optimize Energy Consumption (LSTM-OEC), to tackle these difficulties in smart 

buildings using big data analytics. The suggested methodology combines historical energy usage 

data with real-time sensor information from IoT devices, driven by the need to cut energy expenses 

and decrease carbon emissions. Utilizing the LSTM-OEC model facilitates the integration of 

intricate temporal relationships and precise prediction of forthcoming energy requirements, hence 

facilitating the dynamic optimization of building energy systemsThe primary objectives of this 

research effort are to develop a preliminary energy management framework employing Long Short-

Term Memory (LSTM) models, assess its effectiveness in reducing energy consumption, and 

examine its potential for scalability and suitability in real-world smart building environments. 

LSTM networks are selected because they can effectively process sequential data and acquire 

knowledge of long-term relationships. This characteristic renders them exceptionally well-suited 

for time-series projection tasks, such as the prediction of energy use. The work showcases the 

effectiveness of LSTM-based energy management systems in generating substantial savings in 

energy usage while ensuring occupant comfort levels through thorough testing and validation. The 

study results indicate that the LSTM-OEC model consistently performs better than conventional 

forecasting techniques, offering more precise projections of forthcoming energy demand. 

Furthermore, the findings of the study indicate that the suggested approach presents a viable and 

flexible resolution for enhancing energy efficiency in intelligent structures, hence facilitating the 

advancement of sustainable infrastructure.  

 

Keywords: Energy consumption; Smart buildings; Sustainable infrastructure; Internet of Things; 

Machine learning techniques; Long Short-Term Memory; Big data analytics 

1. Introduction 
The efficient management of energy usage in intelligent buildings has become a 

significant obstacle to sustainable infrastructure advancement [1]. Given the escalating energy 

demand and mounting environmental apprehensions, there exists a pressing want for inventive 

approaches to augment energy efficiency and alleviate the ecological impact of contemporary 

structures [2]. Intelligent buildings with a wide range of Internet of Things (IoT) devices present 

a distinct potential to utilize data-driven methodologies to enhance energy efficiency [3]. 

Nevertheless, deriving practical and valuable information from the vast volumes of data 

produced by these Internet of Things (IoT) devices poses a significant challenge in achieving 
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effective energy management [4]. This study aims to investigate and utilize machine learning 

techniques, specifically LSTM neural networks [5], to enhance energy efficiency in smart 

buildings using big data analytics [6]. In the present context, the application of machine learning 

presents the potential to extract significant insights from the extensive data present in smart 

building environments, therefore facilitating the development of more efficient energy 

management techniques [7].  

The rationale for doing this research arises from the necessity to mitigate energy 

expenses and decrease carbon emissions linked to building activities. With the growing 

recognition of sustainability's significance by the worldwide population, there is an urgent 

requirement to create inventive solutions that enhance energy efficiency and aid in 

environmental conservation [8]. The suggested LSTM-OEC approach combines past energy 

consumption data with up-to-date sensor data obtained from Internet of Things (IoT) devices 

placed in intelligent buildings [9]. The study aims to effectively estimate future energy 

consumption by utilizing the LSTM model [10], a particular type of recurrent neural network 

known for its capacity to grasp long-term relationships in sequential data. LSTM-based 

predictions can improve energy efficiency and enable proactive energy management methods 

by dynamically optimizing building energy systems [11].  

This research aims to achieve three main objectives: firstly, to create a predictive energy 

management framework that utilizes LSTM models to forecast energy consumption patterns; 

secondly, to assess the effectiveness of this framework in optimizing energy consumption in 

smart building environments; and thirdly, to evaluate its scalability and applicability in real-

world scenarios [12]. Pursuing these aims, the study intends to offer significant perspectives on 

the capacity of machine learning-based energy management systems to transform sustainable 

infrastructure development. LSTM networks [13] are highly suitable for the given task owing 

to their innate capacity to process sequential data and acquire complex temporal relationships. 

This characteristic renders them well-suited for time series forecasting tasks, such as predicting 

energy consumption, where past patterns are essential in shaping future projections [14]. The 

project aims to address the constraints of conventional forecasting approaches and enhance the 

accuracy and reliability of future energy demand predictions by utilizing LSTM models [15].  

Through thorough experimentation and validation, the study seeks to showcase the 

effectiveness of LSTM-based energy management systems in achieving substantial reductions 

in energy consumption while ensuring occupant comfort levels. The study's primary outcomes 

demonstrate the LSTM-OEC model's superiority over conventional forecasting methods [16], 

underscoring its capacity to transform energy management strategies in intelligent buildings. 

Moreover, the findings of the study highlight the potential for the proposed technique to be 

easily expanded and adjusted, thereby facilitating its widespread use in the pursuit of 

sustainable infrastructure development. This study signifies a notable advancement in 

enhancing energy efficiency in intelligent buildings by combining big data analytics [17] and 

machine learning techniques [18]. The study aims to utilize LSTM neural networks [19] to 

provide building managers and stakeholders with practical insights that can contribute to the 

advancement of a sustainable and energy-efficient future.  

The key contributions of this study are 

• To develop a predictive energy management framework using LSTM models 

to forecast future energy demands in smart buildings, enabling proactive 

energy management and occupant comfort. 

• To assess the efficiency of a suggested energy management framework in 

intelligent building settings, showcasing the effectiveness of LSTM-based 

systems in decreasing energy usage and delivering precise forecasts of future 
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energy requirements, emphasizing the possibilities of machine learning-based 

approaches. 

• To examine the scalability and applicability of the LSTM-based energy 

management framework in real-world smart building environments, providing 

insights for widespread adoption and laying the groundwork for sustainable 

infrastructure development practices. 

 

This paper is organized in the following manner: Section 2 provides an overview of the 

current body of investigation in the literature. Section 3 provides a comprehensive description 

of the proposed system and its design. Section 4 examines the experimental findings and 

provides a detailed analysis. Lastly, section 5 of the study finishes with a concise overview of 

the findings. 

2. Research Methodology 

The prioritization of optimizing energy usage in smart buildings has become imperative 

due to the pursuit of sustainable infrastructure. There has been significant interest in the 

utilization of machine learning methods for regulating energy in smart buildings, mostly 

because of its ability to analyze large datasets and derive practical insights. The purpose of this 

systematic review is to synthesize and analyze previous research that has explored the 

application of machine learning techniques in improving energy efficiency inside intelligent 

buildings. The comprehensive research extensively analyzes various machine-learning 

techniques for predicting energy use in intelligent buildings. The research assesses the 

effectiveness of regression models, neural networks, ensemble approaches, and other 

algorithms in accurately predicting energy consumption trends [20]. It investigated the 

utilization of Support Vector Machines (SVM) in forecasting energy usage in intelligent 

structures. By examining past energy consumption data and environmental variables, SVM 

models exhibit encouraging outcomes in precisely predicting forthcoming energy requirements, 

hence assisting in implementing proactive energy management techniques [21]. A study 

suggested utilizing reinforcement learning to enhance the control of HVAC systems in 

intelligent buildings. 

The model is capable of dynamically adjusting HVAC settings to decrease energy 

consumption and maintain interior comfort levels by acquiring optimal control policies through 

interactions with the building environment [22]. The current research examined the application 

of machine learning techniques in the domain of predictive maintenance within intelligent 

commercial structures. The utilization of sensor information and equipment indicators of 

performance in predictive maintenance models enables the detection of issues or inefficiencies. 

It allows proactive maintenance measures to minimize energy waste and enhance system 

reliability [23]. A study examined the application of unsupervised learning methods, 

specifically clustering and autoencoders, in the context of anomaly detection inside smart 

building devices. Unsupervised learning algorithms are crucial in detecting malfunctions, 

inefficiencies, or security breaches in building operations by identifying anomalous energy 

consumption patterns or system behaviors [24]. The study presented a reinforcement learning-

based demand response system aimed at improving conservation of energy in smart buildings. 

The model demonstrates the ability to adapt energy use according to changing power costs, 

demand signals, and environmental factors, aiming to optimize energy conservation while 

ensuring the comfort of occupants [25]. Genetic algorithms are employed in research to 

optimize lighting control strategies within smart buildings. Determining appropriate lighting 

schedules to minimize energy consumption while maintaining adequate illumination levels is 

achieved using genetic algorithms, which consider several parameters like occupancy patterns, 

natural lighting conditions, and energy efficiency objectives [26]. A hybrid forecasting model 



BigDataStream Mining 
https://piqm.saharadigitals.com/     

51 

ISSN: 3079-417X  

was built in the study, which integrates machine learning algorithms and conventional time 

series analysis approaches to anticipate energy usage in smart buildings. The hybrid model 

enhances prediction accuracy and robustness by combining the advantages of various 

approaches [27]. The study investigated the utilization of ensemble learning methodologies, 

specifically Random Forests and Gradient Boosting Machines, in the context of energy 

optimization inside intelligent buildings. Ensemble learning improves prediction accuracy and 

robustness to uncertainty by integrating several models, enabling the development of effective 

energy management methods [28]. The aforementioned research underscore the importance of 

utilizing machine learning methodologies to augment energy conservation in smart buildings. 

Researchers can use data-driven methodologies to create inventive solutions that improve 

energy efficiency, decrease expenses, and contribute to sustainable building operations. 

Multiple research gaps exist in the current body of literature about optimizing energy 

usage in smart buildings through machine learning techniques. Numerous research primarily 

concentrates on utilizing historical data to forecast energy consumption. However, they neglect 

to include the influence of real-time environmental conditions and occupant behaviors that 

could potentially affect energy usage. Certain methodologies may exhibit limited scalability 

when applied to extensive building portfolios or a wide range of building types, constraining 

their practicality in real-world contexts. Although short-term predictions can be precise, the 

long-term efficiency and ability to adjust to evolving circumstances are sometimes disregarded. 

The proposed LSTM-OEC model addresses the shortcomings of utilizing LSTM networks to 

capture temporal relationships in energy consumption data. Additionally, the model integrates 

real-time sensor information to enable dynamic optimization. This model provides precise and 

reliable long-term forecasts and can be easily expanded to accommodate different types of 

buildings. It is well-suited for practical implementation in smart building settings. 

3. Proposed Method 

The study's methodology presents a comprehensive framework for enhancing energy 

utilization in smart buildings through the use of the LSTM-OEC model. The objective of this 

model is to utilize the functionalities of LSTM networks, a distinct category of recurrent neural 

networks, in order to dynamically optimize energy consumption. The architecture and 

workflow of the LSTM-OEC model have been carefully designed to optimize its ability to 

capture intricate temporal correlations and adapt to dynamic environmental conditions in real 

time. 

The architectural framework of the LSTM-OEC model seen in Figure 1 has several 

layers, each designed to serve a distinct function in the energy optimization process. 

Commencing with the input layer, which receives preprocessed data on past energy usage and 

current sensor readings, the model advances through LSTM layers designed to acquire 

knowledge of long-term relationships in sequential data. Stacked thick layers are employed to 

facilitate the processing of features and the creation of predictions. The output layer generates 

the estimates of future energy use, utilizing the acquired patterns and input data. In addition, 

the LSTM-OEC model is subjected to thorough training, validation, and testing stages to 

guarantee its precision and ability to generalize. Upon deployment, it consistently monitors 

sensor data in real-time to dynamically modify building systems, reducing energy usage while 

ensuring occupant comfort. The LSTM-OEC model's iterative nature enables it to adapt and 

improve its predictions over time, leading to a robust and scalable solution for managing 

renewable energy sources in intelligent buildings. 
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Figure 1. The architecture of the LSTM-OEC Framework 

a. Data Collection and Preprocessing  

The first stage of the methodology focuses on thorough data collecting and preparation 

methods to guarantee the precision and effectiveness of the LSTM-OEC strategy. Historical 

energy usage data is systematically collected for various smart building systems, including 

HVAC, lighting, and appliances. Furthermore, real-time sensor data streams are collected with 

great attention to detail, including several variables such as temperature, humidity, occupancy 

patterns, and exterior weather conditions. Following this, the gathered data is subjected to 

meticulous preprocessing procedures to improve its appropriateness for training and analyzing 

the model. The preparation stage encompasses essential procedures, such as addressing missing 

values using imputation methods, standardizing the features to normalize their scales and 

promote model convergence, and detecting and eliminating outliers to maintain data integrity. 

Additionally, synchronization of diverse data sources and temporal consistency can be achieved 

using data interpolation and time series alignment techniques. The methodology builds a strong 

foundation for further model construction and optimization by carefully curating and preparing 

the varied input sources. Implementing this complete method improves the LSTM-OEC 

model's capacity to capture intricate energy consumption patterns accurately and guarantees its 

dependability in practical smart building scenarios. 

b. Feature Engineering 

In the methodology, feature engineering is a crucial stage that seeks to extract relevant 

insights from the extensive dataset obtained throughout the data collecting and preparation 

phases. The LSTM-OEC model's ability to recognize significant schemes and relationships in 

the input data is greatly improved by this method. Feature engineering involves carefully 

curating or engineering a wide range of domain-specific characteristics to encompass different 

aspects of smart building operations. The features include factors such as building attributes 

like floor area, building age, construction materials, occupancy patterns like occupancy density 

and activity schedules, and environmental conditions like temperature fluctuations, humidity 

levels, and outdoor weather predictions. Moreover, sophisticated feature engineering 

methodologies may encompass generating derived features by mathematical transformations or 
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amalgamations of pre-existing variables, encompassing intricate interactions and non-linear 

associations within the dataset.  

In addition, it is feasible to utilize dimensionality reduction techniques that include 

Principal Component Analysis (PCA) to enhance the feature space and enhance computational 

efficiency, all while preserving predictive accuracy. The curated features function as the input 

variables for the LSTM-OEC model, establishing the basis for the model's ability to acquire 

knowledge and derive insights to enhance energy efficiency in intelligent buildings. Using 

domain-specific expertise and sophisticated feature engineering methodologies, the 

methodology guarantees that the LSTM-OEC model possesses the necessary capabilities to 

proficiently navigate the complexities inherent in smart building dynamics and provide 

practical recommendations for sustainable energy management.  

c. LSTM-OEC Model Design 

The LSTM-OEC model's architecture is carefully designed to leverage the capabilities 

of LSTM networks for efficient energy usage in smart buildings. The model consists of multiple 

interconnected layers designed to capture temporal relationships and optimize energy usage 

dynamically. Each layer has a unique purpose in the energy optimization process. The input 

layer of the model serves as the starting point and receives preprocessed feature vectors that 

represent past energy use and real-time sensor data. The input feature vector at time step 𝑡, 

denoted as 𝑥𝑡 , encompasses historical energy use and real-time sensor data. Equation (1) 

represents the input layer.  

𝑥𝑡 = [𝑥𝑡,1, 𝑥𝑡,2, . . . , 𝑥𝑡,𝑛]       (1) 

The variable 𝑥𝑡 , 𝑖 represents the 𝑖𝑡ℎ feature at time step 𝑡, while 𝑛 represents the 

complete count of features. The feature vectors encompass a substantial amount of information 

retrieved during the data collection and preprocessing stages. It includes many aspects, 

including building attributes, occupancy patterns, and environmental conditions. The LSTM 

layers are of significant importance in the architecture of the model, as they are intentionally 

organized to sufficiently represent the long-term dependencies that are inherent in sequential 

data. Equation (2) updates the hidden state ℎ𝑡 and cell state 𝑐𝑡, of the LSTM at time step 𝑡. 

ℎ𝑡 , 𝑐𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1)      (2) 

𝐿𝑆𝑇𝑀() denotes the operation performed by the LSTM cell. Every LSTM cell inside 

these layers retains internal states, enabling the model to retain previous information and 

acquire complex patterns as time progresses. Utilizing the LSTM-OEC model allows for the 

efficient capture of intricate energy consumption patterns in intelligent buildings while 

accommodating changing trends and seasonal variations. Following the LSTM layers, the 

model has fully connected dense layers to effectively handle the extracted characteristics and 

facilitate the transmission of information within the model. The output of the dense layers at 

time step t, denoted as zt, is computed according to Equation (3).  

𝑧𝑡 = 𝜎(𝑊 ⋅ ℎ𝑡 + 𝑏)       (3) 

where 𝑊 is the weight matrix, 𝑏 is the bias vector, and 𝜎 stands for the activation 

function. The thick layers in the model incorporate the acquired representations from the LSTM 

cells, facilitating the extraction of more advanced features and the generation of comprehensive 

insights into energy usage patterns. During the concluding phase of the architectural design, the 

output layer amalgamates the acquired knowledge and generates prognostications on 

forthcoming energy use. Define 𝑦𝑡, as the anticipated energy usage at time step 𝑡, calculated 

according to Equation (4).  
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𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ⋅ 𝑧𝑡 + 𝑐′)      (4) 

The softmax function is denoted as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(), the weight matrix is represented as 𝑉, 

and the bias vector is denoted as 𝑐′. The output layer utilizes the input data and the acquired 

patterns from the LSTM layers to produce precise predictions, offering vital information for 

proactive energy management and optimization techniques. The LSTM-OEC model 

incorporates interconnected layers that collaborate to effectively capture, process, and 

understand smart buildings' complex dynamics associated with energy consumption. The 

equations presented above depict the mathematical procedures embedded inside each layer of 

the LSTM-OEC model, encompassing the processing of input data and the generation of 

predictions about future energy use. The model utilizes LSTM networks to capture temporal 

dependencies, providing a strong framework for dynamically optimizing energy usage. It 

enables sustainable and efficient building operations. 

d. Training the LSTM-OEC Model 

An essential aspect of improving smart buildings' prediction skills and energy 

efficiency is the LSTM-OEC model's training phase. The combination of historical energy 

usage data and real-time sensor information forms the fundamental dataset for training the 

model. The model undergoes iterative parameter adjustments throughout the training process 

to minimize a predetermined loss function. The purpose of this loss function is to measure the 

disparity between the anticipated and observed values of energy usage. The optimization 

process is aided by utilizing backpropagation, a technique in which the model calculates 

gradients of the loss function concerning its parameters and subsequently updates them. 

Optimization techniques known as gradient descent Adam optimization are frequently utilized 

to iteratively enhance a model's weights, thereby guiding it towards convergence towards an 

ideal solution. Through an iterative training approach, the LSTM-OEC model develops the 

capability to accurately capture complex temporal relationships and trends in the data. This 

capability allows for accurate forecasts on future energy consumption. The model that has 

undergone training employs historical information and sensor inputs in order to efficiently 

manage and enhance energy consumption in smart building environments. 

e. Validation and Testing 

After training, the LSTM-OEC model is put through rigorous validation and testing 

processes to evaluate its predictive accuracy and robustness. The evaluation of the model's 

efficacy is conducted by utilizing a different validation dataset, distinct from the training data, 

in order to quantify its capacity for generalization. The purpose of this validation dataset is to 

function as an autonomous standard, facilitating the evaluation of the model's capacity to extend 

acquired patterns to unfamiliar data and mitigate overfitting, a phenomenon in which the model 

may exhibit strong performance on the training data but struggle to generalize to novel cases. 

In addition, the precision and efficiency of the LSTM-OEC model in forecasting future energy 

consumption patterns are assessed by conducting thorough testing on a specialized testing 

dataset. The testing dataset comprises authentic data samples not utilized during the training or 

validation phases, thereby facilitating a comprehensive assessment of the model's efficacy in 

real-world situations.  

By evaluating the model's prediction skills on previously unseen data, these testing 

methodologies offer significant insights into its dependability and appropriateness for practical 

use in intelligent building settings. The performance of the LSTM-OEC model is subjected to 

rigorous validation and testing procedures, which aim to assess its dependability and efficacy 

in optimizing energy usage. These techniques validate the model's effectiveness by confirming 
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its ability to generalize and evaluate its predicted accuracy on unseen data. This validation is 

essential for implementing the model in sustainable and efficient smart building operations.  

f. Dynamic Optimization 

After the training and validation process, the LSTM-OEC model moves on to the 

dynamic optimization phase. During this particular phase, it assumes a pivotal function in the 

real-time management of energy in intelligent buildings. The model utilizes real-time sensor 

data streams to feed information continuously and utilizes its acquired patterns and temporal 

dependencies to produce precise forecasts of future energy demand. The predictions above are 

of utmost importance in facilitating the ability of building control systems to adapt and modify 

different energy-consuming devices and systems by evolving environmental conditions and 

occupancy patterns. One example of how HVAC settings can be adjusted is by utilizing 

projected temperature patterns, optimizing lighting levels based on occupancy data, and 

scheduling energy-intensive appliances to operate during periods of low demand.  

By leveraging the knowledge offered by the LSTM-OEC model, building control 

systems can coordinate accurate and proactive modifications, guaranteeing optimal energy 

efficiency while concurrently satisfying the comfort needs of occupants. This dynamic 

optimization methodology allows intelligent structures to promptly adjust to varying energy 

requirements and external influences, optimizing energy conservation and fostering sustainable 

building practices. In addition, the LSTM-OEC model and building control systems have a 

continuous feedback loop that enables adaptive optimization strategies. This loop allows for 

continuing adjustments based on changing conditions and feedback from the building 

environment. Utilizing this iterative procedure guarantees the optimization of energy 

consumption in accordance with evolving dynamics, making a significant contribution to the 

long-term sustainability and efficiency of smart building operations.  

g. Monitoring and Fine-Tuning 

Even after implementation, the LSTM-OEC model undergoes ongoing monitoring and 

development to ensure its sustained effectiveness in optimizing energy usage in smart buildings. 

It is imperative to diligently observe the performance indicators of the model throughout this 

phase and frequently modify it to accommodate evolving building circumstances and 

occupancy patterns. Regular evaluation of the model's predictive accuracy, generalization 

capabilities, and overall performance indicators is fundamental to continuous monitoring. By 

carefully examining these measurements, any irregularities or inconsistencies can be quickly 

detected, enabling early intervention and modification.  

Regular fine-tuning is crucial to maintain the alignment of the LSTM-OEC model with 

the ever-changing characteristics of smart building settings. To ensure optimal performance, it 

may be necessary to recalibrate the model when building conditions change over time and 

occupancy patterns vary. The fine-tuning process includes modifying model parameters, 

retraining on up-to-date data, or adjusting hyperparameters to maintain the model's efficacy in 

accurately reflecting the evolving dynamics of energy consumption. The LSTM-OEC model 

undergoes an iterative process of monitoring and fine-tuning to maintain its adaptability and 

responsiveness to the dynamic nature of smart building operations. Through proactive measures 

to handle fluctuations in performance and react to developing trends, the model consistently 

provides accurate projections and effective strategies for optimizing energy consumption. It 

contributes to the long-term enhancement of energy efficiency and the overall comfort of 

occupants in smart buildings.  

Table 1 shows the proposed LSTM-OEC Model Algorithm. Initializing, compiling, 

training, evaluating, optimizing, and deploying the LSTM-OEC model for smart building 
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energy consumption optimization is described in the algorithm. Initial model parameters 

include LSTM layers, units per layer, learning rate, epochs, batch size, and optimization 

technique. LSTM layers are initialized using parameters. Add LSTM and optional dense layers, 

then compile with the loss function and optimizer. Learning entails iterating over epochs and 

batches of the dataset with historical energy consumption and sensor data as input and actual 

energy consumption as the target. Various metrics assess model performance. Optimization and 

retraining using optimized hyperparameters are possible. The trained model is then used to 

forecast fresh data and perform dynamic energy optimization methods. 

Table 1: Proposed LSTM-OCE Model's Algorithm 

Algorithm 1: LSTM-OEC Model 

Initialize LSTM-OEC model parameters: 

- Number of LSTM layers;  Number of units/neurons in each LSTM layer; 

Learning rate, Number of epochs, Batch size 

Initialize LSTM layers: 

for each LSTM layer:  create an LSTM layer with a specified number of 

units/neurons 

   Compile LSTM-OEC model: Add LSTM layers  

   Train LSTM-OEC model: 

         for each epoch: 

            for each batch in the dataset: 

                 input data (historical energy consumption and sensor information) 

                 target data (actual energy consumption) 

                 train LSTM-OEC model on batch 

                 evaluate model performance on the validation  dataset 

Evaluate LSTM-OEC model 

Optimize LSTM-OEC model: Fine-tune model hyperparameters and Retrain 

model with optimized parameters. 

Deploy LSTM-OEC model: Use the trained model to make predictions on new 

data. 

 

The sophisticated LSTM-OEC model uses LSTM networks to handle smart building 

energy optimization challenges. The model captures temporal dependencies in energy 

consumption statistics and real-time sensor information to provide a sophisticated 

understanding of energy usage components' dynamic interactions. The LSTM-OEC paradigm 

enables proactive, data-driven decision-making for smart buildings' sustainable and efficient 

operation through dynamic optimization. The approach allows building control systems to 

make real-time modifications to optimize energy usage, occupant comfort, and environmental 

sustainability using predicted insights from historical and real-time data. The LSTM-OEC 

model transforms smart building energy management by seamlessly integrating powerful 

machine-learning techniques with real-world applications. The methodology enables 

sustainable and resilient smart building ecosystems by solving energy optimization's numerous 

difficulties holistically. 
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4. Experimental Analysis 

a. Setup 

The study employed an extensive dataset of historical energy consumption data and 

real-time sensor information from smart buildings [29] in the experimental configuration. The 

dataset encompasses a range of factors, including HVAC utilization, lighting intensity, 

occupancy trends, temperature, humidity, and exterior meteorological conditions. The dataset 

was partitioned into three subsets: training (60%), validation (20%), and testing (20%), in order 

to ensure a comprehensive assessment of the model. The performance of the suggested LSTM-

OEC model was assessed using a variety of assessment measures, including the R-squared 

coefficient, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Peak Load Reduction rate. These data offer a thorough 

understanding of the models' forecast accuracy, error rates, and energy optimization 

capabilities. Furthermore, the study compared the LSTM-OEC model's performance to various 

other models, such as Random Forest (RF), K-nearest Neighbors (KNN), and SVM. The 

selection of these models was based on their pertinence to tasks involving the forecast of energy 

use and their extensive utilization in the existing body of literature. Using this experimental 

configuration, the objective was to comprehensively examine the efficacy of the LSTM-OEC 

model in optimizing energy usage in smart buildings compared to pre-existing models. 

b. Results 

Figure 2 depicts the R-squared coefficient values for the LSTM-OEC model and other 

models, specifically RF, KNN, and SVM, at various epoch counts. The R-squared coefficient 

values indicate the extent to which the models explain the variance in the energy consumption 

data, with larger values suggesting superior prediction accuracy. After careful examination, it 

is clear that the LSTM-OEC framework continuously surpasses the existing algorithms in 

performance throughout all epochs. The LSTM-OEC model performs better than RF, KNN, 

and SVM, with an R-squared coefficient of 89.15% after 20 epochs. With increasing epochs, 

the LSTM-OEC model demonstrates greater superiority, as evidenced by its R-squared values 

reaching 97.89% at 100 epochs, which is the greatest among all models. The outstanding 

success of the LSTM-OEC model can be attributed to its ability to accurately capture complex 

temporal relationships and adapt to changing energy consumption patterns in intelligent 

buildings. The recurrent design of the LSTM-OEC model facilitates their ability to effectively 

acquire knowledge from sequential data, leading to enhanced predicted accuracy and improved 

exploitation of real-time sensor information. 
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Figure 2. R-squared coefficient of the LSTM-OEC and Other Models 

 

Figure 3. Mean Squared Error Rate of the LSTM-OEC and Comparative Models 

Figure 3 displays the MSE rates for the LSTM-OEC model and its comparator models, 

namely RF, KNN, and SVM, across several epochs. The MSE rate is a metric that measures the 

average squared deviation between projected and actual energy consumption figures. 

Decreased values of the MSE rate indicate higher levels of predictive accuracy. After careful 

examination, it is clear that the LSTM-OEC model continuously surpasses the other models in 

terms of MSE rates over all epochs. The LSTM-OEC model performs better than RF, KNN, 

and SVM, achieving the lowest MSE rate of 2.145 after 20 epochs. The LSTM-OEC model has 

constantly improved performance as the number of epochs grows, continually demonstrating 

lower MSE rates than the other models. The remarkable effectiveness of the LSTM-OEC model 

can be attributed to its ability to accurately represent complex temporal relationships and adapt 

to changing patterns of energy use in smart buildings. The LSTM architecture facilitates the 

model's ability to efficiently acquire knowledge from sequential input, leading to enhanced 

predictive accuracy and improved management of energy use. 

 

Figure 4. RMSE Rate of the LSTM-OEC and Comparative Models 
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Figure 4 illustrates the RMSE rates for the LSTM-OEC model and its comparator 

models, namely RF, KNN, and SVM, across several epochs. The RMSE is a metric that 

measures the average squared deviation between projected and actual energy consumption 

numbers. A lower RMSE value signifies a higher level of prediction accuracy. After careful 

examination, it is clear that the LSTM-OEC model continuously surpasses the other algorithms 

in terms of RMSE rates over all epochs. The LSTM-OEC model performs better than RF, KNN, 

and SVM, with the lowest RMSE rate of 1.145 after 20 epochs. The LSTM-OEC model has 

consistently improved performance as the number of epochs grows, consistently demonstrating 

lower RMSE rates than the other models. The excellent success of the LSTM-OEC model can 

be attributed to its ability to effectively capture complex temporal relationships and adapt to 

dynamic patterns of energy usage in smart buildings. The model can efficiently learn from 

sequential data thanks to the LSTM architecture, which improves prediction accuracy and 

optimizes energy consumption. 

Figure 5 illustrates the MAPE rates throughout several epochs for the LSTM-OEC 

model, as well as the other models presently employed, namely KNN, RF, and SVM. The 

MAPE is a quantitative measure that assesses the average percentage discrepancy between 

anticipated and actual usage of energy figures. An MAPE number that is lower indicates a 

higher level of prediction accuracy. Based on the conducted analysis, it is evident that the 

LSTM-OEC paradigm consistently demonstrates greater performance in terms of MAPE rates 

when compared to the current models. After 20 epochs, the LSTM-OEC model demonstrates 

the lowest MAPE rate of 1.987%, surpassing the performance of RF, KNN, and SVM. The 

LSTM-OEC model has constant higher performance as the number of epochs grows, 

consistently demonstrating lower MAPE rates than the other models. The tremendous efficacy 

of the LSTM-OEC model can be attributed to its ability to effectively capture complex temporal 

linkages and adapt to dynamic patterns of energy use in smart buildings. The 

LSTM architecture enables efficient knowledge acquisition from sequential data, enhancing 

predictive accuracy and improving energy usage management. 

 

Figure 5. MAPE Rate of the LSTM-OEC and Existing Models 



Optimizing Energy Consumption in Smart Buildings through Big Data and Machine Learning   
 

60 

Vol.No : 1 Issue No : 1 Jan 2025 

 

Figure 6. Peak Load Reduction Rate of the LSTM-OEC and Comparative Models 

Figure 6 presents the PLR rates for the LSTM-OEC and comparator models, namely 

RF, KNN, and SVM, at different epochs. PLR is a metric used to evaluate the ability of models 

to reduce peak energy demand during periods of high demand. A higher rate of PLR indicates 

greater effectiveness in optimizing energy usage. It is evident from a thorough analysis that the 

LSTM-OEC system continuously outperforms the comparator systems in terms of PLR rates 

across all epochs. The LSTM-OEC model demonstrates a Peak Load Reduction rate of 14% 

after 20 epochs, outperforming the RF, KNN, and SVM models. The LSTM-OEC model 

demonstrates its superiority as the number of epochs increases, as evidenced by its PLR rates 

of 54% at 100 epochs, notably greater than the other models. Predictive insights enable the 

LSTM-OEC model to dynamically regulate energy usage and capture complex temporal 

correlations, which contributes to its excellent performance. The recurrent architecture of the 

system facilitates the efficient acquisition of knowledge from sequential data, leading to the 

development of proactive energy management methods that effectively mitigate peak energy 

demand and improve overall energy efficiency in smart buildings. 

c. Discussion 

The acquired results offer comprehensive insights into the LSTM-OEC model's 

performance in relation to other models across a range of measures. Figure 2 showcases the 

consistently improved performance of the LSTM-OEC model in terms of R-squared coefficient 

values. It indicates a higher level of predictive accuracy and a greater ability to capture a larger 

proportion of variance in the energy consumption data. The LSTM-OEC model's ability to 

capture intricate temporal relationships is responsible for its excellence in properly predicting 

energy demand in smart buildings. Figures 3 and 4 illustrate the higher performance of the 

LSTM-OEC model in terms of MSE and RMSE rates, respectively. Throughout all epochs, the 

LSTM-OEC model continually demonstrates superior accuracy in predicting energy 

consumption patterns since it consistently achieves lower error rates than comparison models. 

The improved accuracy of predictions and optimization of energy usage can be attributed to the 

LSTM-OEC model's capacity to adapt to changing energy consumption dynamics. 

Moreover, as depicted in Figure 5, the LSTM-OEC model regularly demonstrates 

superior performance compared to existing models regarding MAPE rates. A lower MAPE rate 
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indicates superior prediction accuracy, and the LSTM-OEC model demonstrates notably 

reduced error rates compared to alternative models over all epochs. It highlights the efficacy of 

the LSTM-OEC model in capturing intricate energy usage patterns and delivering more precise 

predictions. Finally, Figure 6 demonstrates that the LSTM-OEC model outperforms other Peak 

Load Reduction rates models throughout all epochs. The LSTM-OEC model demonstrates its 

capacity to dynamically optimize energy consumption and decrease peak energy demand during 

periods of high demand, thereby enhancing energy efficiency and promoting the sustainable 

operation of smart buildings. This study's findings confirm the LSTM-OEC model's 

effectiveness in enhancing smart buildings' energy efficiency, establishing it as a viable 

approach for promoting sustainable and effective building operations.  

5. Conclusion 

The primary goal of this study was to optimize energy usage in smart buildings by 

combining big data analytics and machine learning approaches. The introduction of the LSTM-

OEC model aimed to incorporate historical energy consumption data and real-time sensor 

information from IoT devices to effectively regulate energy usage dynamically. The major 

intention of this study were to create a predictive energy management framework utilizing 

LSTM models, to analyze its effectiveness in managing energy usage, and to evaluate its 

scalability and utility in practical smart building situations. The present study has made a 

noteworthy contribution to the existing body of literature by introducing an innovative 

methodology for energy optimization utilizing LSTM networks. The study's results highlight 

the LSTM-OEC model's higher performance compared to traditional forecasting approaches 

and comparative models such as RF, KNN, and SVM. This superiority is evident across 

multiple evaluation measures, including the R2 coefficient, MSE, RMSE, MAPE, and PLR 

rate. This study's results have demonstrated the LSTM-OEC model's effectiveness in properly 

forecasting energy consumption trends and maximizing energy utilization in intelligent 

buildings. Nevertheless, it is crucial to recognize certain constraints, such as the dependence on 

simulated or restricted real-world datasets that may not comprehensively encompass the 

intricacies of varied building settings. Furthermore, the suggested LSTM-OEC model may want 

additional refinement and verification in extensive implementations to guarantee its resilience 

and efficacy in real-world scenarios. Potential future endeavours may involve broadening the 

room of study to encompass a wider variety of datasets derived from authentic smart building 

environments, engaging in collaborative efforts with industry partners to validate findings in 

real-world deployment situations, and investigating sophisticated machine learning 

methodologies to enhance predictive capabilities. Additionally, the incorporation of additional 

factors such as occupancy patterns and data from building energy management systems may 

yield a deeper comprehension of utilization dynamics and enhance the effectiveness of energy 

optimization strategies. This study establishes a fundamental basis for forthcoming 

investigations focused on the progression of sustainable and efficient building operations by 

means of data-driven energy management methodologies. 
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